

INFORME SOBRE LAS POSIBLES FILTRACIONES DEL AGUA DE LA RED DE DISTRIBUCIÓN A UNA CUEVA EN

INIESTA

(CUENCA)

ÍNDICE

1.	INI	TRODUCCIÓN	5
2.	UB	ICACIÓN	5
3.	SIT	UACIÓN ACTUAL DEL ABASTECIMIENTO	7
4.	TO	MA DE MUESTRAS	8
5.	CA	RACTERÍSTICAS GEOLÓGICAS	9
6.	HII	DROGEOLOGía	. 11
6	.1.	Hidrogeología Regional	. 11
6	5.2.	Hidrogeología Local	. 12
7.	CA	RACTERIAZACIÓN HIDROQUÍMICA	. 14
7	.1.	Representaciones hidroquímicas de ambas muestras	. 15
7	.2.	Informe de aptitud para agua de consumo	. 19
8.	CO	NCLUSIONES	. 20
9.	BIE	SLIOGRAFÍA	. 21
ÍNI	DICE	DE FIGURAS	
	ıra 1.	Mapa de situación del municipio de Iniesta.	
_	ıra 2.	Ubicación de las captaciones y los depósitos de Iniesta sobre ortofoto	
_	ıra 3. ıra 4.	Mapa geológico de los alrededores de Iniesta	
_	ıra 5.	Masas de Agua Subterránea de la provincia de Cuenca y ubicación del municipio.	
Figu	ıra 6.	Ubicación de las captaciones de agua subterránea, depósitos y la cueva en estudio de Iniesta	13
_	ıra 7.	Diagrama de Piper-Hill-Langelier	
	ıra 8.	Diagramas de Stiff	
_	ıra 9. ıra 10.	Diagrama de Schöeller Diagrama de aptitud agrícola	
	ıra 11.		

ÍNDICE DE TABLAS

Tabla 1.	Ubicación de las captaciones y los depósitos de Iniesta	
	Características de las captaciones de agua subterránea de Iniesta	
Tabla 3.	Resultados de las analíticas de las muestras de Iniesta.	1.
Tabla 4.	Informe de aptitud de agua de consumo humano de las dos muestras	19

Anexo. Análisis Químicos

1. INTRODUCCIÓN

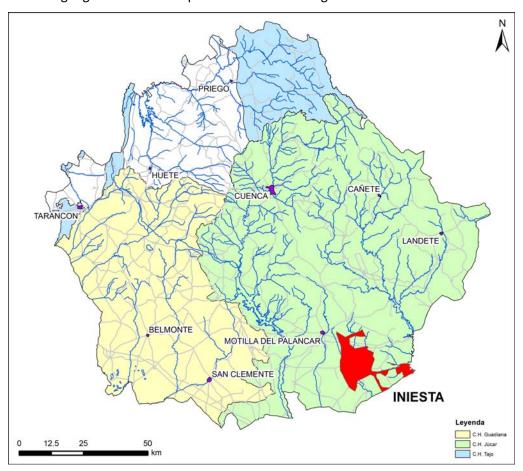
La Diputación Provincial de Cuenca y el Instituto Geológico y Minero de España (IGME) suscribieron en 1980 un Convenio - Marco de Asistencia Técnica para "la investigación y evaluación de las aguas subterráneas, conservación y aprovechamiento adecuado de los acuíferos". Durante los últimos treinta y cinco años, en aplicación del Convenio - Marco suscrito, el IGME ha venido colaborando, mediante sucesivos convenios específicos de colaboración con la Diputación Provincial de Cuenca, en la ampliación del conocimiento e investigación del medio hídrico subterráneo y en la utilización racional de dicho recurso.

Como continuación de esta colaboración, ambos organismos han establecido un nuevo Convenio Específico para el conocimiento hidrogeológico, el aprovechamiento y protección del abastecimiento de agua a poblaciones, la investigación del patrimonio geológico-hidrogeológico y los estudios de riesgo geológico, para los años 2015-2018, en cuyo marco se emite el presente informe.

Su finalidad es aportar la caracterización físico-química de las aguas procedentes de una filtración en una cueva en el núcleo urbano de Iniesta. Dicha filtración tiene un origen desconocido y, debido a la posibilidad de que proceda de una rotura en la red de distribución, el presente informe comparará la muestra tomada de la filtración de la cueva con el agua procedente de la red de distribución de agua potable del municipio.

2. UBICACIÓN

Iniesta es un municipio **ubicado** al sureste de la provincia de Cuenca (Castilla La Mancha), en el límite con la provincia de Albacete. Dista unos 70 km de la capital conquense. Se sitúa en la comarca de **La Manchuela**, **ocupando una** superficie de 238,4 km². Su altitud es de 868 m s.n.m.


El municipio se localiza geográficamente en la hoja geológica MAGNA a escala 1:50.000 nº 718 – Iniesta

Hidrográficamente la zona de estudio se sitúa en la Cuenca Hidrográfica del Júcar, quedando

el municipio enclavado entre el arroyo de la Encina y la rambla de la Graja que confluyen al sur del municipio en el arroyo de Ledaña.

La situación geográfica del municipio se muestra en la Figura 1.

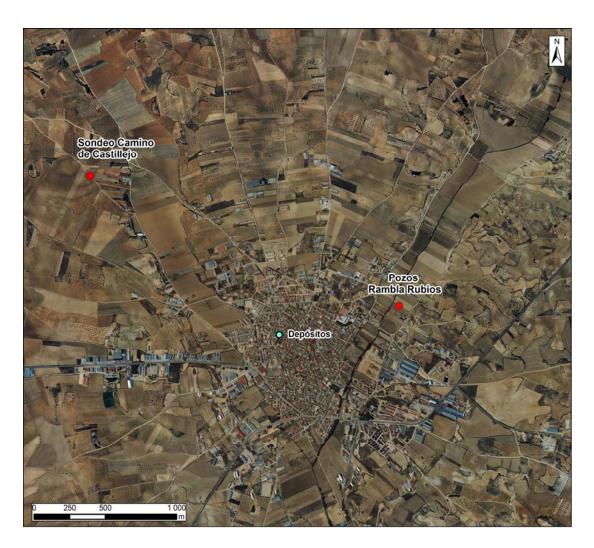
Figura 1. Mapa de situación del municipio de Iniesta.

3. SITUACIÓN ACTUAL DEL ABASTECIMIENTO

La población actual de Iniesta es de 4555 habitantes residentes, que se incrementan hasta 5530 de forma estacional (EIEL 2015).

El sistema de abastecimiento del municipio cuenta con cuatro captaciones de agua subterránea. La captación principal del sistema de abastecimiento (sondeo del Camino de Castillejo) es un sondeo ubicado unos 1.600 m. al noroeste de la población.

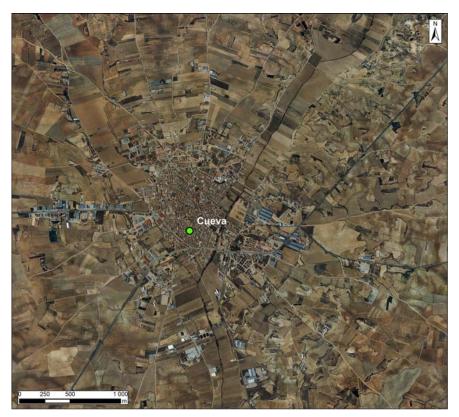
Las otras tres captaciones son tres pozos similares que están juntos y ubicados a unos 250 m. noreste del núcleo urbano en el paraje denominado Rambla de los Rubios.


Desde las 4 captaciones sale el agua a un depósito semienterrado, con una capacidad de 500 m³, donde se mezcla, y desde el que se eleva a un depósito elevado, en este con una capacidad de 100 m³, desde el que se realiza la distribución a toda la red de abastecimiento.

La situación de las captaciones y los depósitos quedan reflejadas en la tabla 1 y en la figura 2.

Captación	UTMX (ETRS89)	UTMY (ERTS89)
Sondeo Camino de Castillejo	606151	4368128
Rambla de los Rubios 1	608287	4367260
Rambla de los Rubios 2	608256	4367264
Rambla de los Rubios 3	608330	4367204
Depósito semienterrado	607476	4367013
Depósito elevado	607472	4367016

 Tabla 1.
 Ubicación de las captaciones y los depósitos de Iniesta


Figura 2. Ubicación de las captaciones y los depósitos de Iniesta sobre ortofoto

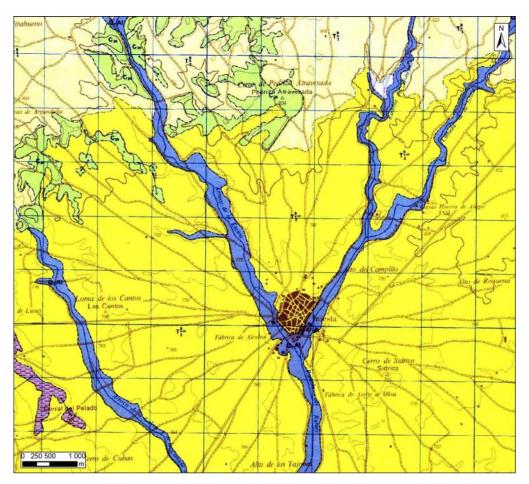
4. TOMA DE MUESTRAS

Con fecha 11 de enero de 2016 se procedió a la toma de las muestras de agua de la filtración de la cueva y de la red de distribución de agua potable del municipio (agua previamente clorada), para su posterior analítica de parámetros físico-químicos.

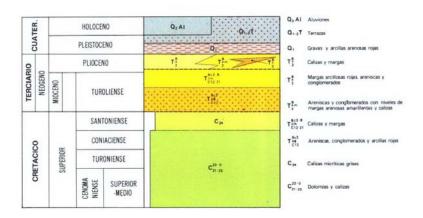
La cueva se sitúa en el núcleo urbano, en la Calle Vicario, nº 16 (UTMX (ETRS89) 607747; UTMY (ETRS89): 4366815), tal y como queda reflejado en la figura 3.

Figura 3. Ubicación de la cueva sobre ortofoto.

5. CARACTERÍSTICAS GEOLÓGICAS

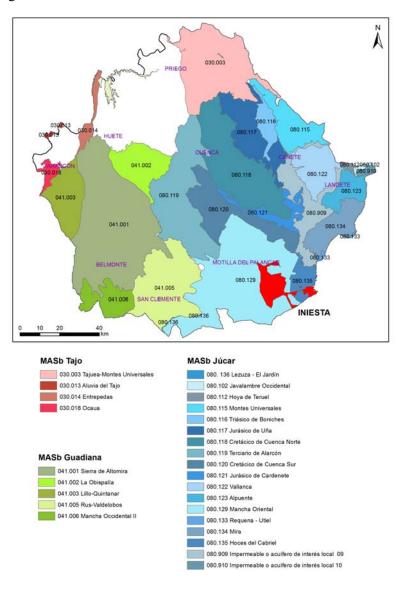

Los materiales sobre los que se encuentra emplazado el municipio de Iniesta son de edades que van desde el Cretácico hasta el Cuaternario tal y como queda reflejado en la figura 4. Los materiales cretácicos únicamente afloran al noroeste del núcleo urbano, ocupando, los materiales terciarios, la mayor parte de la superficie de afloramiento.

Los materiales cretácicos aflorantes en la zona están constituidos por calizas microcristalinas del Santoniense cuya potencia visible es de unos 30 m.


Los materiales terciarios presentan un origen detrítico y químico. Fundamentalmente, la zona se encuentra recubierta por depósitos detríticos de tipo areniscoso y conglomerático con niveles de margas arenosas amarillentas y calizas intercaladas, con una potencia que puede alcanzar los 55 m, y que pasan, en cambio lateral de facies, a margas arcillosas rojas, areniscas y conglomerados con un espesor de entre 25 y 30 metros.

El Cuaternario está representado por depósitos de fondo de valle, constituidos por arenas, arcillas y gravas.

LEYENDA


Figura 4. Mapa geológico de los alrededores de Iniesta.

6. HIDROGEOLOGÍA

6.1. Hidrogeología Regional

La provincia de Cuenca participa de tres cuencas hidrográficas distintas: Guadiana, Júcar y Tajo, que a su vez quedan divididas en distintas Masas de Agua Subterránea (MASb) tal y como se muestra en la Figura 5. El municipio de Iniesta está situado en la Demarcación Hidrográfica del Júcar, dentro de las MASb 080.129 Mancha Oriental, y 080.135 Hoces del Cabriel, definidas en el Plan Hidrológico del Júcar.

Figura 5. Masas de Agua Subterránea de la provincia de Cuenca y ubicación del municipio.

La MASb 80.129 Mancha Oriental está formada por la superposición de tres acuíferos:

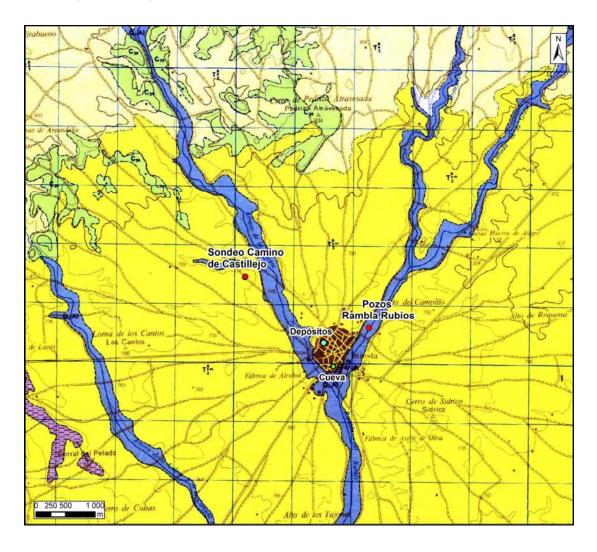
- 1) Acuífero profundo formado por carbonatos jurásicos. Es el más extenso e importante de la masa. Está confinado por las facies impermeables suprayacentes.
- 2) Acuífero intermedio formado por carbonatos cretácicos en su mayor parte confinados.
- 3) Acuífero superior formado por materiales miocenos (Pontiense), tanto carbonáticos como detríticos, que en ocasiones presentan facies químicas.

Con respecto a la MASb 80.135 Hoces del Cabriel, está formada, al igual que la MASb 80.129 Mancha Oriental, por 3 acuíferos superpuestos de los cuales dos son de edad mesozoica (uno Jurásico y otro del Cretácico superior) ambos confinados y carbonatados, y un tercer acuífero Mioceno formado por materiales detríticos y carbonatados.

6.2. Hidrogeología Local

Tal y como se ha mencionado anteriormente, el municipio de Iniesta se abastece de 4 captaciones de agua subterránea. La captación principal del sistema de abastecimiento, el sondeo del Camino de Castillejo, es un sondeo que explota los carbonatos mesozoicos. Su caudal de explotación se sitúa en torno a los 12 l/s.

Las otras tres captaciones, los pozos de la Rambla de los Rubios, son pozos de escasa profundidad y gran diámetro que explotan el acuífero detrítico mioceno. Extraen caudales de 2 a 5,5 l/s y se usan como apoyo a la captación principal.


Las características de las captaciones se reflejan en la tabla 2 y su ubicación, en la figura 6:

Captación	UTMX (ETRS89)	UTMY (ERTS89)	Prof. (m)	Caudal	Acuífero captado
Sondeo Camino de Castillejo	606151	4368128	10	2	
Rambla de los Rubios 1	608287	4367260	10	2	Mioceno
Rambla de los Rubios 2	608256	4367264	10	5	
Rambla de los Rubios 3	608330	4367204	-	12	Mesozoico

 Tabla 2.
 Características de las captaciones de agua subterránea de Iniesta

El agua de las 4 captaciones se lleva a los depósitos ubicados en el núcleo urbano donde se mezclan y se distribuyen a la red de abastecimeinto.

Figura 6. Ubicación de las captaciones de agua subterránea, depósitos y la cueva en estudio de Iniesta

7. CARACTERIAZACIÓN HIDROQUÍMICA

Para la caracterización hidroquímica de las aguas en estudio, personal de la diputación de Cuenca tomó una muestra del agua de la cueva y otra de la red de distribución el 11 de enero de 2016 y las remitieron a los laboratorios del IGME para su posterior análisis.

A continuación se muestran los resultados de las analíticas (incluidas en el Anexo: Análisis Químicos), relaciones iónicas, facies hidroquímicas y representaciones gráficas más significativas.

M-1. Red de distribución

DQO	Cl	SO4	HCO ₃	CO ₃	NO_3	Na	Mg	Ca	K	mg/l
0,5	30	33	284	0	64	18	18	106	0	ш
										_
pH(*)	Cond(**)	R.S. 180	NO_2	NH ₄	PO_4	SIO ₂	F	CN	mg/l	
7,43	659	469,8	0,00	0,00	0,00	12,3	<0,5	<0,010	ш	
*ud pH	** μS/cm									-
Ag	Al	As	В	Ba	Be	Cd	Co	µg/l		
	< 1	0,26	< 100			< 0,2		й		
									="	
Cr	Cu	Fe	Hg	Li	Mn	Mo	Ni	μg/1		
0,43	< 0,2	< 15	< 0,5		< 0,5		< 0,5	ที		
									-	
Pb	Sb	Se	Th	Ti	U	V	Zn	µg/l		
0,38		1,28					2,87	ที		
		· · · · · · · · · · · · · · · · · · ·								
Turbidez	[14									

M-2. Cueva

DQO	Cl	SO4	HCO ₃	CO ₃	NO ₃	Na	Mg	Ca	K	mg/l
0,9	25	143	306	0	39	19	21	132	25	ш
										_
pH(*)	Cond(**)	R.S. 180	NO_2	NH ₄	PO_4	SIO ₂	F	CN	mg/l	
7,48	826	613,6	0,00	0,00	0,00	13,4	<0,5	<0,010	w	
*ud pH	** μS/cm									_
Ag	Al	As	В	Ba	Be	Cd	Co	μg/l		
	3,78	19,3	< 100			< 0,2		я́п		
Cr	Cu	Fe	Hg	Li	Mn	Mo	Ni	µg/1		
0,22	0,49	< 15	< 0,5		< 0,5		< 0,5	ЗH		
	•								•	
Pb	Sb	Se	Th	Ti	U	V	Zn	µg/1		
< 0,2		0,81					4,47	311		
	•								<u>-</u> '	

Turbidez	Ę
<1	5

Relaciones iónicas

	Mg/Ca	K/Na	Na/Ca	Na/Ca+Mg	Cl/HCO ₃	SO ₄ /Cl
M-1 Red	0.28	0	0.15	0.12	0.18	0.81
M-2 Cueva	0.26	0.77	0.13	0.1	0.14	4.22

Facies Hidroquímica

	Aniónica	Catiónica
M-1 Red	HCO ₃	Ca
M-2 Cueva	HCO ₃ SO ₄	Ca

 Tabla 3.
 Resultados de las analíticas de las muestras de Iniesta

7.1. Representaciones hidroquímicas de ambas muestras

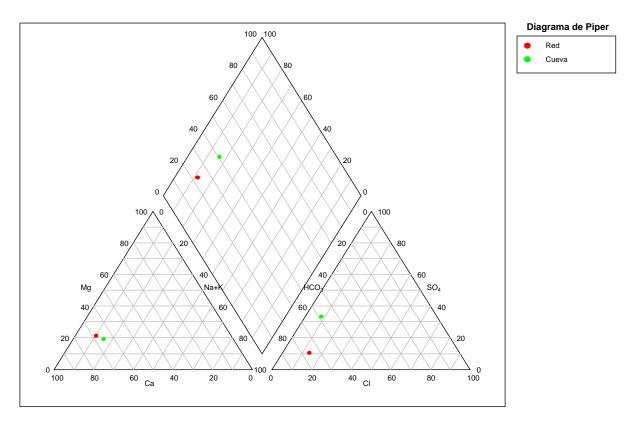
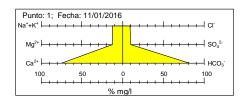



Figura 7. Diagrama de Piper-Hill-Langelier

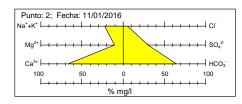
M-1. Red de distribución

	1		
	mg/l	meq/l	%mg/l
Na+K	18	0.78	12.68
Mg	18	1.48	12.68
Ca	106	5.29	74.65
Ua .	106	5.29	74.03

	mg/l	meq/l	%mg/l
CI	30	0.85	8.65
SO4	33	0.69	9.51
HCO3	284	4.65	81.84

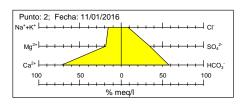
Punto: 1;	Fecha: 11/01	/2016		
Na⁺+K⁺ ——		, , , , ,		+ Cl⁻
Mg ²⁺ L	++++			SO ₄ ² ·
100	50	0	50	100
		% meq/l		

1			
	mg/l	meq/l	%meq/l
Na+K	18	0.78	10.37
Mg	18	1.48	19.60
Ca	106	5.29	70.03


	mg/l	meq/l	%meq/l
CI	30	0.85	13.68
SO4	33	0.69	11.10
HCO3	284	4.65	75.22

Punto: 1; Fecha: 11/	01/2016	
Na ⁺ +K ⁺	· · · / · · ·	
Mg ²⁺		SO ₄ 2-
Ca ²⁺ + + + + + + +		HCO ₃
25 12.5		12.5 25
	meq	

1				
	mg/l	meq/l		
Na+K	18	0.78		
Mg	18	1.48		
Ca	106	5.29		


	mg/l	meq/l
CI	30	0.85
SO4	33	0.69
HCO3	284	4 65

M-2. Cueva

2			
	mg/l	meq/l	%mg/l
Na+K	44	1.47	22.34
Mg	21	1.73	10.66
Ca	132	6.59	67.01

	mg/l	meq/l	%mg/l
CI	25	0.71	5.27
SO4	143	2.98	30.17
HCO3	306	5.02	64.56

2			
	mg/l	meq/l	%meq/l
Na+K	44	1.47	16.04
Mg	21	1.73	18.90
Ca	132	6.59	72.06

	mg/l	meq/l	%meq/l
CI	25	0.71	8.11
SO4	143	2.98	34.23
HCO3	306	5.02	57 66

Punto: 2; Fecha: 11/01/201	6
Na ⁺ +K ⁺ L + + + L + + + + + + + + + + + + + +	Cr
Mg ²⁺	1 1 1 1 1 1 1 1 1 1 1 SO ₄ 2-
Ca ²⁺	HCO ₃
25 12.5	0 12.5 25
	meq

2		
	mg/l	meq/l
Na+K	44	1.47
Mg	21	1.73
Ca	132	6.59

	mg/l	meq/l
CI	25	0.71
SO4	143	2.98
HCO3	306	5.02

Figura 8.

Diagramas de Stiff

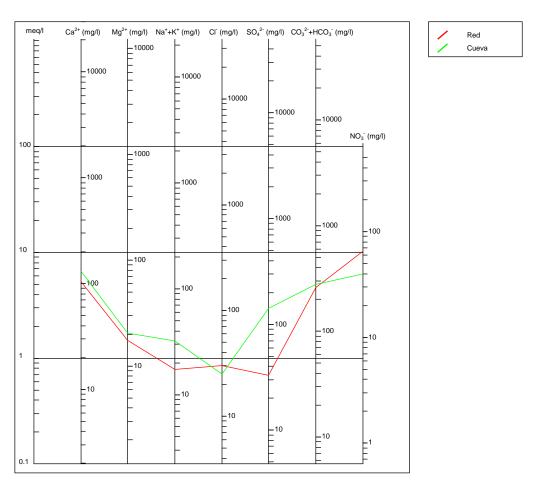


Figura 9. Diagrama de Schöeller

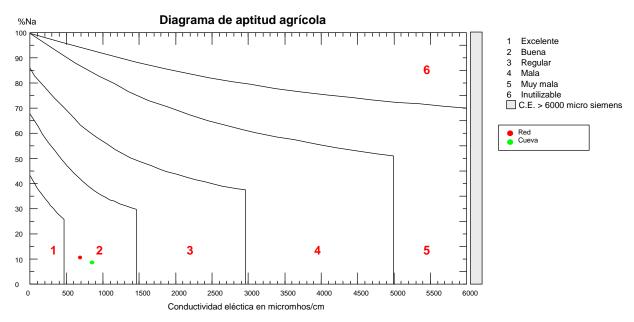
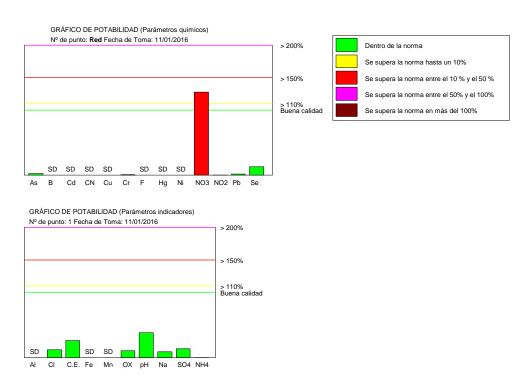



Figura 10. Diagrama de aptitud agrícola

M-1. Red de distribución

M-2. Cueva

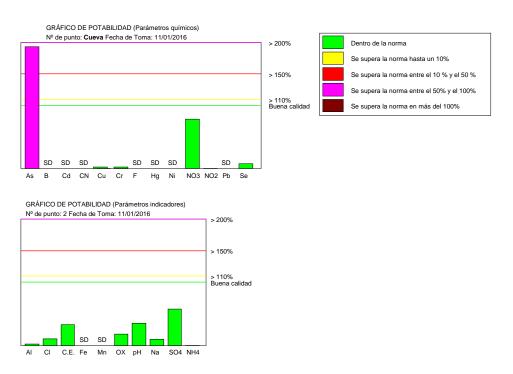


Figura 11. Gráficos de potabilidad del agua

7.2. Informe de aptitud para agua de consumo

Los resultados de ambas muestras enviados por el laboratorio se han incluido en la tabla 4, así como en el Anexo: Análisis Químicos. En la última columna de la tabla, se han incluido alguno de los valores paramétricos recogidos en la normativa que regula la calidad para aguas de consumo humano (Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano).

Fachas	Fec	ha de toma		11/01/2016	11/01/2016	
Fechas	Fecha Term	inación de a	nálisis	18/02/2016	18/02/2016	
	Parámetro	Símbolo	Unidad	VALOR DE LA ANALÍTICA	VALOR DE LA ANALÍTICA	Valores paramétricos fijados en el
				Red de distr.	Cueva	R.D. 140/2003
	Arsénico	As	μg/L	0.26	19.3	10
	Boro	В	mg/L	<0.1	< 0.1	1
	Cadmio	Cd	μg/L	< 0.2	< 0.2	5
	Cianuro	CN	μg/L	< 10	< 10	50
Parámetros químicos	Cobre	Cu	μg/L	< 0.2	0.49	2000
luí m	Cromo	Cr	μg/L	0.43	0.22	50
b so.	Fluoruro	F	mg/L	<0.5	<0.5	1.5
netr	Mercurio	Hg	μg/L	< 0.5	< 0.5	1
arár	Níquel	Ni	μg/L	0.71	<0.5	20
Δ.	Nitrato	NO ₃	mg/L	64	39	50
	Nitrito	NO_2	mg/L	0.00	0.00	0,5
	Plomo	Pb	μg/L	0.38	< 0.2	10
	Selenio	Se	μg/L	1.28	0.81	10
	Amonio	NH ₄	mg/L	0.00	0.00	0.5
	Aluminio	Al	μg/L	<1	3.78	200
.es	Cloruro	Cl	mg/L	30	25	250
ador	Conductividad	CE	μS/cm	659	826	2500
ndic	Hierro	Fe	μg/L	<15	<15	200
Parámetros indicadores	Manganeso	Mn	μg/L	<0.5	<0.5	50
meti	Oxidabilidad	-	mg O₂/L	0,5	0.9	5
arár	рН	-	Ud de pH	7.43	7.48	6.5 - 9.5
	Sodio	Na	mg/L	18	19	200
	Sulfato	SO ₄	mg/L	33	143	250

Tabla 4. Informe de aptitud de agua de consumo humano de las dos muestras

8. CONCLUSIONES

La caracterización de las aguas subterráneas adquiere una elevada importancia, máxime las destinadas en la actualidad o en un futuro próximo para abastecimiento.

En la presente nota técnica, se han adjuntado los valores correspondientes a los distintos parámetros físico-químicos obtenidos tras la analítica de las muestras recogidas y que permiten una caracterización completa.

Dichos valores han sido representados en diferentes tipos de gráficos, con la finalidad de aportar una caracterización lo más completa de las muestras analizadas.

Estos valores se han resumido en la tabla 4 y se han contrastado con los valores fijados para varios parámetros recogidos en la normativa que regula la calidad para aguas de consumo humano (Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano).

Las muestras analizadas presentan facies diferentes, siendo la facies del agua de la red de distribución de tipo bicarbonatado cálcico, mientras que la del agua de la cueva es de tipo bicarbonatado-sulfatado cálcico, con una mayor concentración en sulfatos que la primera.

En el diagrama de Schöeller (fígura 9) queda de manifiesto que en general las aguas de la cueva presentan una mineralización en iones mayoritarios ligeramente superior que las aguas de la red de distribución, si bien la tendencia se invierte para el caso del cloro y los nitratos.

Las aguas de la red de distribución presentan 64 mg/l de nitratos, superando el límite de 50 mg/l establecido en la legislación vigente para las aguas de consumo humano.

Con respecto a las aguas de la cueva, presentan 19 μ g/l de arsénico, casi el doble de los 10 μ g/l que establece como límite el Real Decreto 140/2003.

No parece que exista una relación directa entre las aguas de la red de distribución y las aguas que afloran en la cueva, ya que algunos elementos aumentan de concentración de

forma significativa en la cueva, como es el caso del arsénico, el cobre, aluminio y sulfatos, así como la conductividad, mientras que otros disminuyen, como en el caso de los nitratos, el selenio, cobre, cromo, plomo, níquel y cloro. En el caso del cloro se puede deber a la volatilidad del mismo, pero no así en el resto de elementos, que en todo caso, deberían haberse mantenido en una concentración similar a la de la red de distribución.

Si bien podría existir una dilución de las aguas de la red de distribución con otras aguas provenientes de algún acuífero local cargada en los elementos que aumentan de concentración en el agua de la cueva, este hecho parece altamente improbable, ya que el caudal que tendría que mezclarse y salir por la cueva tendría que ser muy elevado para, al menos, diluir los nitratos casi a la mitad de su concentración en la red de distribución.

9. BIBLIOGRAFÍA

- **IGME** (1979). Mapa geológico E 1:50.000 nº 718 "Iniesta"
- **IGME-Diputación de Cuenca (2001)**. Situación actual de los sistemas de abastecimiento en la provincia de Cuenca. Iniesta.

Madrid, abril de 2016

El autor del informe

Fdo. Ana Castro Quiles

ANEXO

ANÁLISIS QUÍMICOS

Informe Nº	16/0011
Referencia de Laboratorio	5595-5
Referencia de envio (Ident. de la muestra	CUENCA-5
Fecha de entrega a Laboratorio	18/01/2016
Proyecto Nº	35300420

De Laboratorio Aguas a Dirección de Aguas Subterráneas

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra M-1 Iniesta Red	Nº Registro		=. de toma 11/01/2015	Minu	itos	Profu	ndidad	l F	18/02/		Num. Muestr 5
Físico-Químicos (*):				N	layorit	tarios (ı	mg/L):				
Oxidab. al MnO4K (mg/L)		Na	K	Ca	Mg	(CI	sc)4	нсо 3	
0,5		18	0	106	18	3	0	33		284	
Conductividad 20° (µS/cm)		CO3	, NO) 3	NO2	N	H4	РО	4	SiO2	
659		0	64		0,00	0,	,00	0,0	0	12,3	
pH (Unid. pH) 7,43					Meta	ales (µ	g/L):				
D. O. 4000 (//)	Ag	Al	As	Bore	o 1	Ва	Ве		Cd	Co	Cr
R. S. 180° (mg/L) 469,8		< 1	0,26	< 10	0				< 0,2		0,43
D C COO (// //)	Cu	Fe	Hg	Li	(Mn	Мо		Ni	Pb	Sb
R. S. 260° (mg/L)	< 0,2	< 15	< 0,5			< 0,5			< 0,5	0,38	
	Se		Sr	Та	Th	TI		U	V	Zn	
	1,28	3								2,8	7
La Jefe de Laboratorio	ş		RECIBII	OO D.	A.S.				V°	B°	
Me	e e										

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μ S/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe Nº	16/0011
Referencia de Laboratorio	5595-5
Referencia de envio (Ident. de la muestra	CUENCA-5
Fecha de entrega a Laboratorio	18/01/2016
Proyecto Nº	35300420

De Laboratorio Aguas a Dirección de Aguas Subterráneas

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra M-1 Iniesta Red	Nº R∂	9	le toma Mi 01/2015	nutos Pi	rofundidad	F. Termina 18/02/20	· · · · · · · · · · · · · · · · · · ·
			Específicos	(*):			
Fluoruro (mg/L) <0,5	CN (mg/L) <0,01	Sulfuros (mg/l	L) Fenole	s (mg/L)	Detergen	tes (mg/L)	CO2 (mg/L)
Materias en suspe	nsión (mg/L)	Dureza (mg/l	L) COT (n	ıg/L) CT	(mg/L)	IC (mg/L)	Bromato (mg/L)
Bromuro (mg/L)	N org (mg/L)	Cloruro cro	matogr. iónica	(mg/L)	CI/Br	Color (UC)	Turbidez (UNF)
Nitrógeno Total		Is	sótopos (Bq/l	_):			
	Radalfa	Erradalfa	Radbeta	Erradbe	ta Ti	trio	
La Jefe de La	aboratorio:	F	RECIBIDO D).A.S.		V° B	

^(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.

Informe N°	16/0011		
Referencia de Laboratorio	5595-6		
Referencia de envio (Ident. de la muestra	CUENCA-6		
Fecha de entrega a Laboratorio	18/01/2016		
Proyecto Nº	35300420		

De Laboratorio Aguas a Dirección de Aguas Subterráneas

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra M-2 Iniesta Cueva	Nº Registro	tro F. de toma Minu 11/01/2015		utos	Profundidad		F. Terminación 18/02/2016		Num. Muestra	
Físico-Químicos (*):				ı	Mayorita	arios (mg/	L):			
Oxidab. al MnO4K (mg/L) 0,9		Na 19	K 25	Ca 132	Mg 21	CI 25		SO₄ 143	HCO ₃	
Conductividad 20° (μS/cm) 826		CO 3	3 N	03	NO2 0,00	NH4 0,00		PO4 0,00	SiO2 13,4	
pH (Unid. pH) 7,48	Metales (μg/L):									
R. S. 180° (mg/L) 613.6	Ag	AI 3,78	As 19,3	Bo		Ba Be	Ð	Cd < 0,2	Co	Cr 0,22
R. S. 260° (mg/L)	Cu 0,49	Fe < 15	Hg < 0,5	L	i N	fin M < 0,5	lo	Ni < 0,5	Pb < 0,2	Sb
	Se 0,81	I	Sr	Та	Th	ΤI	l	. v	Z r 4,	
La Jefe de Laboratorio):		RECIBI	DO D.	A.S.			V°	B°	
/ Che	>									

^(*) Las determinaciones serán expresadas en mg/l, excepto Conductividad (μS/cm) y pH (unidades de pH). Valor = 0,00 es inferior a su límite de determinación.

Informe Nº	16/0011
Referencia de Laboratorio	5595-6
Referencia de envio (Ident. de la muestra	CUENCA-6
Fecha de entrega a Laboratorio	18/01/2016
Proyecto N⁰	35300420

De Laboratorio Aguas a Dirección de Aguas Subterráneas

INFORME DE DETERMINACIONES REALIZADAS

Nombre Muestra M-2 Iniesta Cueva	Nº Ro	egistro F. de	toma Minuto	os Profundio		ninación Num. Muestr 2/2016 6
		E	Específicos (*):			
Fluoruro (mg/L) <0,5	CN (mg/L) <0,01	Sulfuros (mg/L)	Fenoles (m	g/L) Deterg	gentes (mg/L)	CO2 (mg/L)
Materias en susper	nsión (mg/L)	Dureza (mg/L)	COT (mg/L) CT (mg/L)	IC (mg/L)	Bromato (mg/L)
Bromuro (mg/L)	N org (mg/L)	Cloruro crom	atogr. iónica (mg	/L) Ci/Br	Color (U	C) Turbidez (UNF)
Nitrógeno Total						
		lsá	otopos (Bq/L):			
	Radalfa	Erradalfa	Radbeta	Erradbeta	Titrio	
La Jefe de La	boratorio:	RE	ECIBIDO D.A.S	S.	V°	В В О

^(*) Las determinaciones serán expresadas en mg/L, excepto Cl/Br, Color (UC) y Turbidez (UNF). Valor = 0,00 es inferior a su límite de determinación.