

NOTA TÉCNICA DE LAS CARACTERÍSTICAS FÍSICO-QUÍMICAS DEL SONDEO Y MANANTIAL DE ABASTECIMIENTO DE OLMEDA DEL REY (CUENCA).

Octubre del 2011

1. INTRODUCCIÓN

La Diputación de Cuenca consciente del interés de las aguas subterráneas, de su valor estratégico y de la dependencia de algunos abastecimientos urbanos en dicho recurso, mantiene un convenio de asistencia técnica con el Instituto Geológico y Minero de España (IGME) desde 1.980. Asimismo, el IGME dentro del ámbito de sus competencias ha desarrollando múltiples trabajos, proyectos y estudios en el marco de dicho convenio.

Como parte de dicho marco de actuación se emite el presente informe, con la finalidad de aportar la caracterización físico-química del sondeo (Coord. UTM 0578208-4404035) y del manantial de abastecimiento (Coord. UTM 0580804-4404155) de Olmeda del Rey, (Cuenca).

2. UBICACIÓN

Olmeda del Rey es una localidad de la provincia de Cuenca, situada en la Comunidad autónoma de Castilla-la Mancha.

Tiene un área de 75,44 km² con una población de 180 habitantes (INE 2009) y una densidad de 2,39 hab/km².

Pertenece a la comarca llamada Serranía Media-Campichuelo y Serranía Baja, que es realmente la agrupación de las comarcas que le dan nombre a esta división administrativa provincial. Es la transición entre la sierra de Cuenca y La Mancha, limitando con la Alcarria y la Manchuela.

La situación geográfica del municipio y la ubicación de la captación es la que se muestra en la Figura 1.

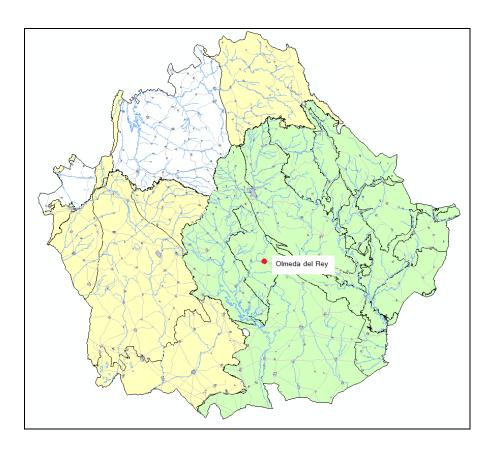
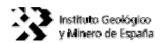


Figura 1. Ubicación de la localidad de Olmeda del Rey.

3. TOMA DE MUESTRA

Con fecha 19/07/2011 se procedió a la visita de las captaciones para la toma de la muestra de agua para su posterior analítica. Las muestras fueron tomadas a la salida del sondeo, estando este en funcionamiento en el momento del muestreo, y del manantial. La situación de la captación se indica en la Tabla 1.



Fotografía 1. Lugar de muestreo (sondeo y manantial).

CAPTACIÓN	N° inventario	UTM X	UTM Y	pН	T ^a (°C)	Conductividad μS/cm
Sondeo 1	_	0543773	4429543	7,07	16,4	908
Manantial	_	0544121	4430284	7,55	17,4	810

Tabla 1. Característica de la actual captación de abastecimiento a Olmeda del Rey.

4. HIDROGEOLOGIA REGIONAL

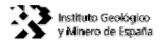
En la provincia de Cuenca se sitúan tres cuencas hidrográficas distintas: Guadiana, Júcar y Tajo; que a su vez quedan divididas en distintas Masas de Agua Subterránea (MASb). La zona considerada se enmarca dentro de la MASb 080.120 "Cretácico de la Cuenca Sur", perteneciente a la cuenca hidrográfica del Júcar.

5. CARACTERIZACIÓN HIDROQUÍMICA

Para la caracterización hidroquímica de las captaciones se tomó una muestra de agua durante la visita realizada en septiembre del 2011, procedente del sondeo (Coord. UTM 0578208-4404035) y del manantial (Coord. UTM 0580804-4404155). Las muestras tomadas han sido analizadas en el laboratorio del IGME.

A continuación se muestran los resultados de las analíticas, relaciones ionicas, facies hidroquimicas y representaciones gráficas más significativas.

* Sondeo


Resultados de la analítica

DQO	Cl	SO4	HCO ₃	CO ₃	NO ₃	Na	Mg	Ca	K	g/l
0,6	9	716	247	0	35	6	21	352	0	m

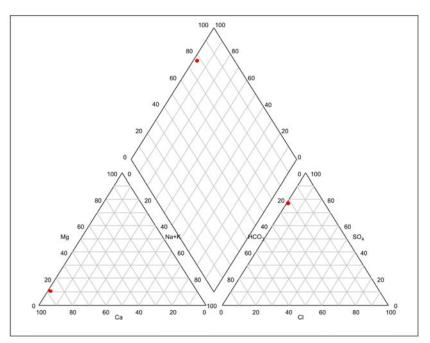
рН	Cond	R.S. 180	NO ₂	NH ₄	PO ₄	SIO ₂	F	CN	g/l
6,95	1407	1374,6	0,00	0,00	0,00	11	<0,5	<0,01	îuı

Cr	Mn	Fe	Cu	Zn	As	Se	Cd	Hg	Pb	9/1
< 0,05	<0,5	< 15	0,25	1,31	0,72	0,72	< 0,2	< 0,5	< 0,2	Яп

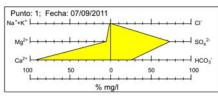
5

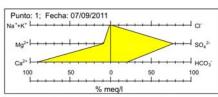
Relaciones iónicas

		Relac	ciones iónicas		
Mg/Ca	K/Na	Na/Ca	Na/Ca+Mg	Cl/HCO3	SO4/Cl
0,10	0,00	0,01	0,01	0,06	58,76


Facies hidroquímica

Anionica	Cationica
SO ₄	Ca




Representaciones hidroquímicas

Piper- Hill-Langelier

Stiff

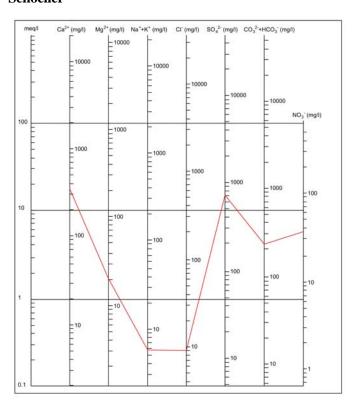
Punto: 1; F	echa: 07/09/2	2011		⊷ CI
Mg ²⁺				→ → SO ₄ 2-
Ca ²⁺ →				+ нсо₃
25	12.5		12.5	25
		meq		7.5. V -

	mg/l	meq/l	%mg/l
Na+K	6	0,26	1,58
Mg	21	1,73	5,54
Ca	352	17,56	92,88

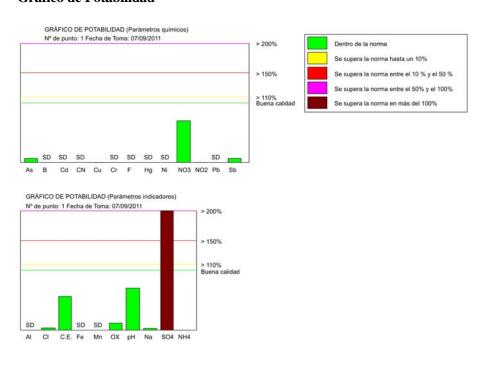
1						
	mg/l	meq/l	%meq/l			
Na+K	6	0,26	1,33			
Mg	21	1,73	8,83			
Ca	352	17,56	89,83			

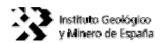
	ma/l	meg/l	%meg/l
Na+K	6	0.26	1,33
Mg	21	1,73	8,83
Ca	352	17,56	89,83

1					
	mg/l	meq/I			
Na+K	6	0,26			
Mg	21	1,73			
Ca	352	17,56			


	mg/l	meq/I
CI	9	0,25
SO4	716	14,91
HCO3	247	4,05

CI	9	0,25
SO4	716	14,91
HCO3	247	4,05


	mg/l	meq/I
CI	1	9 0,25
SO4	710	6 14,91
HCO3	24	7 4.05

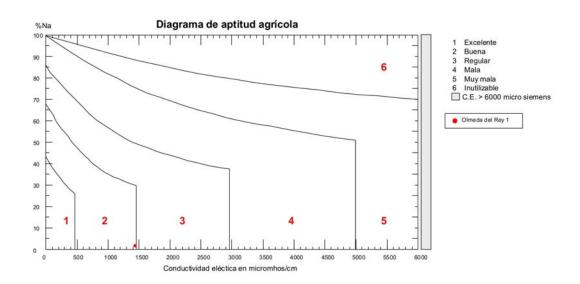


Schoeller

Gráfico de Potabilidad

INFORME APTITUD AGUA DE CONSUMO

Muestra 1 Fecha 07/09/2011


Parámetros físico-químicos

	Límite	Valor	Alerta
Arsénico	10 µ/l	0,72	
Boro	1 mg/l		
Cadmio	5 µg/l		
Cianuro	50 µg/l	0,72	
Cobre	2 mg/l	0,25	
Cromo	50 µg/l	7	
Fluoruro	1.5 mg/l		
Mercurio	1 µg/l		
Niquel	20 µg/l		
Nitrato	50 mg/l	35	
Nitrito	0.5 mg/l	0	
Plomo	25 µg/l		
Selenio	10 µg/l		

Parámetros indicadores

	Límite	Valor	Alerta
Aluminio	200 µg/l		
Cloruro	250 mg/l	9	
C.E.	2500 µS/cm	1407	
Hierro	200 µg/l		10
Manganeso	50 μg/l		
Oxidabilidad	5 mg O2/I	0,6	
pН	6.5 -9.5	6,95	
Sodio	200 mg/l	6	
Sulfato	250 mg/l	716	XXXX

Diagrama de aptitud agrícola

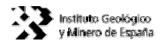
* Manantial

Resultados de la analítica

DQO	Cl	SO4	HCO ₃	CO ₃	NO ₃	Na	Mg	Ca	K	g/1
0,7	12	25	247	0	52	6	6	106	0	/gm

pН	Cond	R.S. 180	NO ₂	NH ₄	PO ₄	SIO ₂	F	CN	g/l
7,43	545	435,8	0,00	0,00	0,00	8,7	<0,5	<0,01	mg

Cr	Mn	Fe	Cu	Zn	As	Se	Cd	Hg	Pb	5/1
< 0,05	< 0,5	< 15	0,23	1,05	0,25	0,70	< 0,2	< 0,5	< 0,2	μg

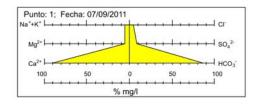

Relaciones iónicas

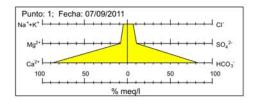
Relaciones iónicas						
Mg/Ca	K/Na	Na/Ca	Na/Ca+Mg	Cl/HCO3	SO4/Cl	
0,09	0,00	0,05	0,05	0,08	1,54	

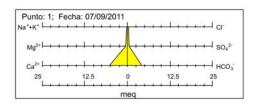
Facies hidroquímica


Anionica	Cationica
HCO ₃	Ca

10




Representaciones hidroquímicas


Piper- Hill-Langelier

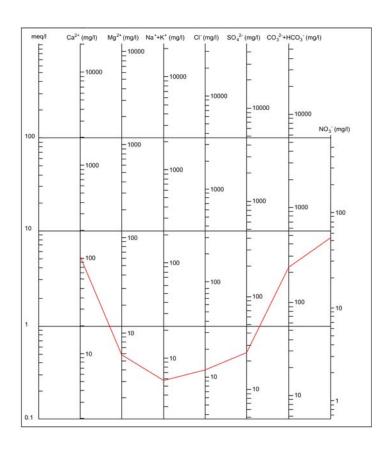
Stiff

	mg/l	meq/I	%mg/l
Na+K	6	0,26	5,08
Mg	6	0,49	5,08
Ca	106	5,29	89,83

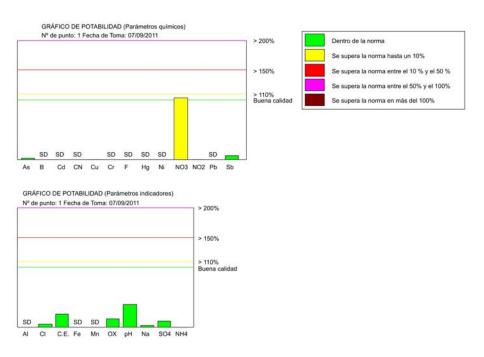
1					
	mg/l	meq/I	%meq/l		
Na+K	6	0,26	4,32		
Mg	6	0,49	8,17		
Ca	106	5,29	87,52		

	mg/l	meq/l
CI	12	0,3
SO4	25	0,5
HCO3	247	4,0

	mg/l	meq/I
CI	12	0,34
SO4	25	0,52
HCO3	247	4,05


	1		
	mg/l	me	q/l
Na+K		6	0,26
Mg		6	0,49
Ca		106	5,29

	mg/l	meq/I
CI	1	12 0,34
SO4	- 2	25 0,52
HCO3	24	4.05


Schoeller

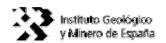
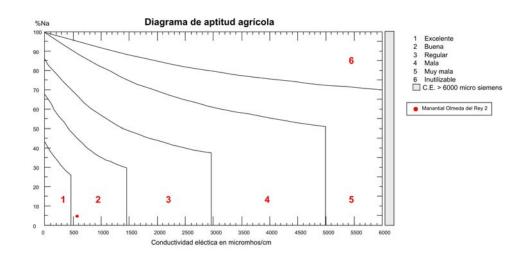

11

Gráfico de Potabilidad

INFORME APTITUD AGUA DE CONSUMO

Muestra 1 Fecha 07/09/2011


Parámetros físico-químicos

	Límite	Valor	Alerta
Arsénico	10 µ/l	0,25	
Boro	1 mg/l		
Cadmio	5 µg/l		
Cianuro	50 μg/l	0,7	
Cobre	2 mg/l	0,23	
Cromo	50 μg/l		
Fluoruro	1.5 mg/l		
Mercurio	1 µg/l		
Niquel	20 µg/l		
Nitrato	50 mg/l	52	X
Nitrito	0.5 mg/l	0	
Plomo	25 µg/l		
Selenio	10 μg/l		

Parámetros indicadores

	Límite	Valor	Alerta
Aluminio	200 μg/l		
Cloruro	250 mg/l	12	
C.E.	2500 µS/cm	545	
Hierro	200 μg/l		
Manganeso	50 μg/l		
Oxidabilidad	5 mg O2/I	0,7	
pН	6.5 -9.5	7,43	
Sodio	200 mg/l	6	
Sulfato	250 mg/l	25	

Diagrama de aptitud agrícola

La caracterización de las aguas subterráneas adquiere una elevada importancia, máxime las destinadas, en la actualidad o en un futuro próximo, para abastecimiento de población. En la presente nota técnica, se han adjuntado los valores correspondientes a los distintos parámetros físico-químicos obtenidos tras la analítica de la muestra recogida y que permiten una caracterización completa. Dichos valores han sido representados en diferentes tipos de gráficos, con la finalidad de aportar una caracterización lo más completa de la muestra analizada.

Madrid, octubre de 2011

El autor del informe

Fdo, José Ángel Díaz Muñoz

	PROCEDIMIENTO DE DETERMINACIÓN DE ELEMENTOS TRAZA EN MUESTRAS DE AGUAS, MÉTODO ESPECTROMÉTRICO ICP-MS										AS DE	Fecha de inicio:19/09/2011 Fecha de salida:21/09/201						9/2011				
PTE-QG-046 HOJA DE RESULTADOS									7.	DTT:	11/350			19								
									1								1					
MUESTRA	Be (μg/L)	AI (μg/L)	V (μg/L)	Cr (μg/L)	Mn (μg/L)	Fe (μg/L)	Co (μg/L)	Ni (μg/L)	Cu (μg/L)	Zn (μg/L)	As (μg/L)	Se (μg/L)	Mo (μg/L)	Ag (μg/L)	Cd (μg/L)	Sb (μg/L)	Ba (μg/L)	Hg (μg/L)	TI (μg/L)	Pb (μg/L)	Th (μg/L)	U (μg/L)
3472-01	< 0,05	<1	0,65	< 0,05	< 0,5	< 15	< 0,05	0,70	0,24	2,13	0,25	< 0,5	0,17	< 0,05	< 0,2	< 0,05	85,0	< 0,5	< 0,05	< 0,2	< 0,05	0,38
3472-02	< 0,05	< 1	2,31	< 0,05	< 0,5	< 15	< 0,05	< 0,4	0,25	1,31	0,72	0,72	0,82	< 0,05	< 0,2	< 0,05	19,9	< 0,5	< 0,05	< 0,2	< 0,05	1,76
3472-03	< 0,05	< 1	0,68	< 0,05	< 0,5	< 15	< 0,05	< 0,4	0,23	1,05	0,25	0,70	0,48	< 0,05	< 0,2	< 0,05	104	< 0,5	< 0,05	< 0,2	< 0,05	0,45
							`,															
										1.												
										F	L Realizad	lo por:		L	1	√° B°						
													· ·	1. 	v.	***						7, -)

Informe Nº	11/350
Referencia de Laboratorio	3472-2
Referencia de envio (Ident. de la muestra	CUENCA-2
Fecha de entrega a Laboratorio	08/09/2011
Proyecto N°	35300200

De Laboratorio Aguas a Dirección de Aguas Subterráneas

INFORME DE DETERMINACIONES REALIZADAS

Nº Regist	ro	F. de toma 07/09/2011	F. Terminación 27/09/2011	n Método	N. Muestra	CO2	Sr	
DQO 0,6	CI 9	SO₄ 716	HCO ₃ 247	CO ₃	NO ₃	Na 6	Mg 21	Ca 352
K 0	pH 6,95	Coduc. (1) 1407	R. S. 180º 1374,6	N0 ₂	NH ₄ 0,00	PO 4 0,00	SiO ₂	Temp
F2 .	В	F <0,5	Li Br	Fe	Mn Cu	Zn	Pb	Cr
Ni	Cd	As	Sb Se	Al	CN De <0,01	etergentes	Hg	
Fenoles		тос	тс	Rad. Alfa(2)	Err Alfa	Rad. Be	eta (2) Err Be	ta

La Jefe de Laboratorio:	RECIBIDO D.A.S.	V° B°

Las determinaciones serán expresadas en mg/l, excepto: (1) en $\,\mu\text{S/cm}\,$ y (2) en Bq/l

OBSERVACIONES:

Num.Reg=SONDEO ABAST.OLMEDA DEL REY 1

PROCEDI	PROCEDIMIENTO DE DETERMINACIÓN DE ELEMENTOS TRAZA EN MUESTR										AS DE	Fecha de inicio:19/09/2011 Fecha de salida:21/09/2011							3/2011			
PTE-QC	AGUAS, MÉTODO ESPECTROMÉTRICO ICP-MS PTE-QG-046 HOJA DE RESULTADOS										DTT: 11/350											
MUESTRA	Be (μg/L)	Al (μg/L)	V (μg/L)	Cr (μg/L)	Mn (μg/L)	Fe (μg/L)	Co (μg/L)	Ni (μg/L)	Cu (μg/L)	Zn (μg/L)	As (μg/L)	Se (μg/L)	Mo (μg/L)	Ag (μg/L)	Cd (μg/L)	Sb (μg/L)	Ba (μg/L)	Hg (μg/L)	TI (μg/L)	Pb (μg/L)	Th (μg/L)	U (μg/L)
3472-01	< 0,05	< 1	0,65	< 0,05	< 0,5	< 15	< 0,05	0,70	0,24	2,13	0,25	< 0,5	0,17	< 0,05	< 0,2	< 0,05	85,0	< 0,5	< 0,05	< 0,2	< 0,05	0,38
3472-02	< 0,05	< 1	2,31	< 0,05	< 0,5	< 15	< 0,05	< 0,4	0,25	1,31	0,72	0,72	0,82	< 0,05	< 0,2	< 0,05	19,9	< 0,5	< 0,05	< 0,2	< 0,05	1,76
3472-03	< 0,05	< 1	0,68	< 0,05	< 0,5	< 15	< 0,05	< 0,4	0,23	1,05	0,25	0,70	0,48	< 0,05	< 0,2	< 0,05	104	< 0,5	< 0,05	< 0,2	< 0,05	0,45
					71		`,															
							7 7			F	Realizad	lo por:			Y .	V° B°						

Informe No	11/350
Referencia de Laboratorio	3472-3
Referencia de envio (Ident. de la muestra	CUENCA-3
Fecha de entrega a Laboratorio	08/09/2011
Proyecto Nº	35300200

De Laboratorio Aguas a Dirección de Aguas Subterráneas

INFORME DE DETERMINACIONES REALIZADAS

Nº Registro REY 2	F. de toma 07/09/2011	F. Terminac 27/09/2011	sión Método	N. Muestra	CO2	Sr	
DQO CI 0,7 12	SO ₄ 25	HCO ₃	CO 3	NO 3	Na 6	M g 6	Ca 106
K pH 0 7,4		R. S. 180 435,8	° N0 ₂ 0,00	NH ₄ 0,00	PO 4 0,00	SiO ₂ 8,7	Temp
F2 B	F <0,5	Li B	r Fe	Mn Cu	u Zn	Pb	Cr
Ni Cd	As	Sb :	Se Al	CN D	etergentes	Hg	
Fenoles	тос	TC	Rad. Alfa(2)	Err Alfa	Rad. B	Seta (2) Err Be	eta

La Jefe de Laboratorio:	RECIBIDO D.A.S.	Vo Bo

Las determinaciones serán expresadas en mg/l, excepto: (1) en μ S/cm y (2) en Bq/l

OBSERVACIONES:

Num.Reg=MANANTIAL.OLMEDA DEL REY 2

ALCANCE DE ACREDITACIÓN

INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA, (IGME)

Dirección: C/ La Calera, 1; 28760 Tres Cantos (Madrid)

Está acreditado por la ENTIDAD NACIONAL DE ACREDITACIÓN, conforme a los criterios recogidos en la Norma UNE-EN ISO/IEC 17025: 2005 y en el documento CGA-ENAC-LEC para la realización de:

Ensayos en el sector medioambiental

ÁREA DE MUESTRAS MEDIOAMBIENTALES LÍQUIDAS

Categoría 0 (Ensayos en el laboratorio permanente)

PARTE A: ANÁLISIS FÍSICO - QUÍMICOS

PRODUCTO/MATERIAL A ENSAYAR	ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO
Aguas continentales	pH (2 - 12 uds. de pH)	Procedimiento interno PTE-AG-002
	Conductividad (10 - 2500 µS/cm)	Procedimiento interno PTE-AG-001
	Residuo seco (180°C) (10 - 20000 mg/l)	Procedimiento interno PTE-AG-005
	Oxidabilidad (0,5 - 10 mg/l)	Procedimiento interno PTE-AG-004
	Metales por espectrofotometría de absorción atómica de llama	Procedimiento interno PTE-AG-008
	Cinc (0,05 - 1 mg/l) Cobre (0,05 - 2 mg/l) Hierro (0,1 - 1 mg/l) Manganeso (0,05 - 0,5 mg/l)	STINAC STINAC

El presente anexo técnico está sujeto a posibles modificaciones. La vigencia de la acreditación puede confirmarse en la web de ENAC (http: www.enac.es)

PRODUCTO/MATERIAL A ENSAYAR	ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO
Aguas continentales (continuación)	Metales por espectrofotometria de absorción atómica con cámara de grafito Arsénico (5 - 100 μg/l) Cadmio (0,5 - 15 μg/l) Cromo (2,5 - 100 μg/l) Hierro (20 - 500 μg/l) Manganeso (10 - 400 μg/l) Plomo (5 - 100 μg/l) Selenio (5 - 30 μg/l)	Procedimiento interno PTE-AG-022
	Mercurio por espectrofotometría de absorción atómica de vapor frío (0,5 - 10 μg/l)	Procedimiento interno PTE-AG-009
	Metales por espectrofotometría de emisión atómica Litio (0,05 - 1 mg/l) Potasio (1 - 50 mg/l) Sodio (2 - 500 mg/l)	Procedimiento interno PTE-AG-007
	Radiactividad α y ß total α (0,004 - 27,17 Bq/l) β (0,014 - 207,53 Bq/l)	Procedimiento interno PTE-AG-006