

NOTA TÉCNICA DE LAS CARACTERÍSTICAS FÍSICO-QUÍMICAS DEL MANANTIAL DE ABASTECIMIENTO DE PINEDA DE GIGÜELA "MEDIOVINO" (CUENCA).

Marzo del 2012

1. INTRODUCCIÓN

La Diputación de Cuenca consciente del interés de las aguas subterráneas, de su valor estratégico y de la dependencia de algunos abastecimientos urbanos en dicho recurso, mantiene un convenio de asistencia técnica con el Instituto Geológico y Minero de España (IGME) desde 1.980. Asimismo, el IGME dentro del ámbito de sus competencias ha desarrollando múltiples trabajos, proyectos y estudios en el marco de dicho convenio.

Como parte de dicho marco de actuación se emite el presente informe, con la finalidad de aportar la caracterización físico-química del manantial de abastecimiento de Pineda de Gigüela, Cuenca.

2. UBICACIÓN

Pineda de Gigüela es una localidad de la provincia de Cuenca, situada en la Comunidad Autónoma de Castilla-la Mancha y enclavada en la mancha conquense. Tiene un área de 28,90 km² con una población de 89 habitantes (INE 2009) y una densidad de 3,08 hab/km².

La situación geográfica del municipio es la que se muestra en la Figura 1.

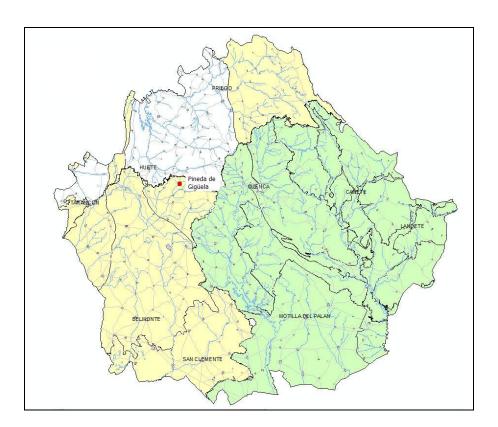
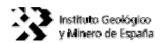


Figura 1. Ubicación de la localidad de Pineda de Gigüela.

3. TOMA DE MUESTRA

Con fecha 20/01/2012 se procedió a la visita de la captación para la toma de la muestra de agua para su posterior analítica. La muestra fue tomada en el manantial. La situación de la captación se indica en la Tabla 1.



Fotografía 1. Lugar de muestreo.

CAPTACIÓN	N° inventario	UTM X	UTM Y	pН	Ta (°C)	Conductividad µS/cm
Manantial	_	536272	4436498	7,74	11,6	482

Tabla 1. Característica de la captación para abastecimiento a Pineda de Gigüela.

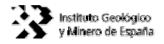
4. HIDROGEOLOGIA REGIONAL

En la provincia de Cuenca se sitúan tres cuencas hidrográficas distintas: Guadiana, Júcar y Tajo; que a su vez quedan divididas en distintas Masas de Agua Subterránea (MASb). La zona considerada se enmarca dentro de la MASb 041.002 "La Obispalia", perteneciente a la cuenca hidrográfica del Guadiana, donde anteriormente no estaba definida ninguna unidad hidrogeológica.

5. CARACTERIZACIÓN HIDROQUÍMICA

Para la caracterización hidroquímica de la captación se tomó una muestra de agua, durante la visita realizada en enero del 2012, procedente del manantial. La muestra tomada ha sido analizada en el laboratorio del IGME.

A continuación se muestran los resultados de la analítica, relaciones iónicas, facies hidroquímicas y representaciones gráficas más significativas.


Resultados de la analítica

DQO	Cl	SO4	HCO ₃	CO ₃	NO ₃	Na	Mg	Ca	K	3/1
0,5	4	38	174	0	9	3	3	75	0	mg

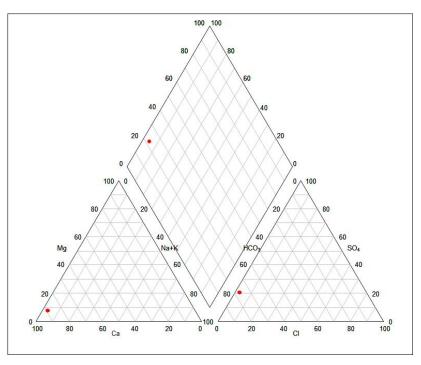
pН	Cond	R.S. 180	NO ₂	NH ₄	PO ₄	SIO ₂	F	CN	g/1
7,53	386	270,2	0,00	0,00	0,00	10,3	<0,5	<0,01	mg

Cr	Mn	Fe	Cu	Zn	As	Se	Cd	Hg	Pb	3/1
< 0,1	< 1	< 15	0,39	1,35	0,27	0,54	< 0,2	< 0,5	< 0,2	/Brl

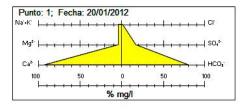
5

Relaciones iónicas

Relaciones iónicas						
Mg/Ca	K/Na	Na/Ca	Na/Ca+Mg	Cl/HCO3	SO4/Cl	
0,07	0,00	0,03	0,03	0,04	7,01	

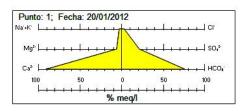

Facies hidroquímica

Anionica	Cationica
HCO ₃	Ca



Representaciones hidroquímicas

Piper- Hill-Langelier



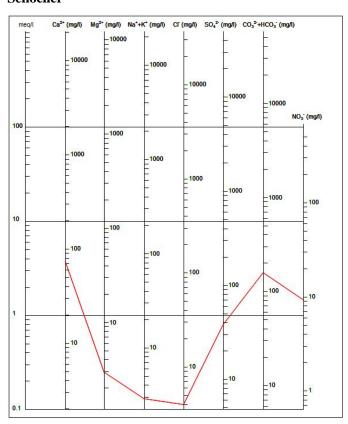
Stiff

3	mg/l	meq/l	%mg/l
Na+K	3	0.13	3.70
Mg	3	0.25	3.70
Ca	75	3.74	92.59

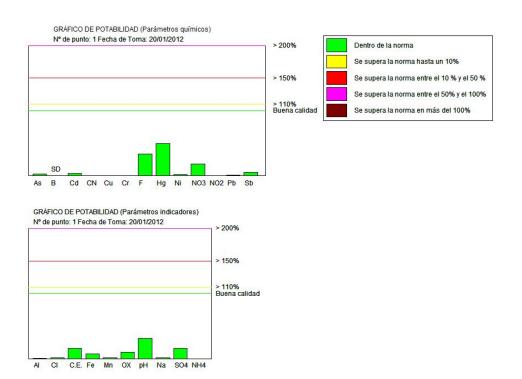
	mg/l	meq/l	%mg/l
CI	4	0.11	1.85
SO4	38	0.79	17.59
HCO3	174	2.85	80.56

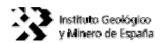
2	mg/l	meq/l	%meq/l
Na+K	3	0.13	3.17
Mg	3	0.25	5.99
Ca	75	3.74	90.84

	mg/l	meq/l	%meq/l
CI	4	0.11	3.00
SO4	38	0.79	21.06
HCO ₃	174	2.85	75.93


Punto: 1; Fecha: 20/01/2012
Mg ²⁻
Ca* HCO ₁ HCO ₁ Ca* HCO ₁ HCO ₁ HCO ₂ HCO ₁ HCO ₂ HCO ₂
meq

1					
3	mg/l	meq/l			
Na+K	3	0.13			
Mg	3	0.25			
Ca	75	3.74			


	mg/l	meq/I
CI	4	0.11
SO4	38	0.79
HCO3	174	2.85

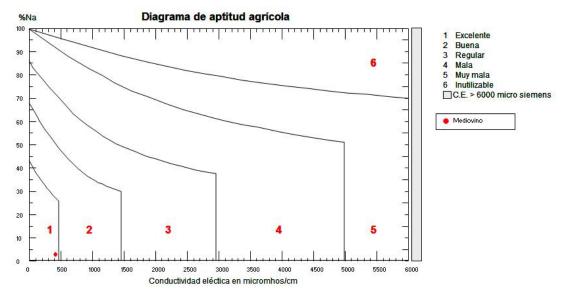


Schoeller

Gráfico de Potabilidad

INFORME APTITUD AGUA DE CONSUMO

Muestra 1 Fecha 20/01/2012


Parámetros físico-químicos

	Límite	Valor	Alerta
Arsénico	10 µ/l	0.27	
Boro	1 mg/l		
Cadmio	5 µg/l	0.2	
Cianuro	50 µg/l	0.54	
Cobre	2 mg/l	0.39	
Cromo	50 µg/l	0.07	
Fluoruro	1.5 mg/l	0.5	
Mercurio	1 µg/l	0.5	
Niquel	20 µg/l	0.4	{
Nitrato	50 mg/l	9	
Nitrito	0.5 mg/l	0	
Plomo	25 µg/l	0.2	
Selenio	10 µg/l		

Parámetros indicadores

	Límite	Valor	Alerta
Aluminio	200 µg/l	1.41	
Cloruro	250 mg/l	4	-
C.E.	2500 µS/cm	386	1
Hierro	200 µg/l	15	
Manganeso	50 μg/l	0.5	
Oxidabilidad	5 mg O2/I	0.5	
рН	6.5 -9.5	7.53	5
Sodio	200 mg/l	3	
Sulfato	250 mg/l	38	

Diagrama de aptitud agrícola

La caracterización de las aguas subterráneas adquiere una elevada importancia, máxime las destinadas, en la actualidad o en un futuro próximo, para abastecimiento de población. En la presente nota técnica, se han adjuntado los valores correspondientes a los distintos parámetros físico-químicos obtenidos tras la analítica de la muestra recogida y que permiten una caracterización completa. Dichos valores han sido representados en diferentes tipos de gráficos, con la finalidad de aportar una caracterización lo más completa de la muestra analizada.

Madrid, marzo de 2012

El autor del informe

Fdo, José Ángel Díaz Muñoz

PROCEDIMIENTO DE DETERMINACIÓN DE ELEMENTOS TRAZA EN MUESTRAS DE AGUAS, MÉTODO ESPECTROMÉTRICO ICP-MS

PTE-QG-046

HOJA DE RESULTADOS

Fecha de salida: 24/02/2012

DTT: 12/0040

MUESTRA	Be (μg/L)	Al (μg/L)	V (μg/L)	Cr (μg/L)	Mn (μg/L)	Fe (μg/L)	Co (μg/L)	Ni (μg/L)	Cu (μg/L)	Zn (μg/L)	As (μg/L)	Se (μg/L)	Mo (μg/L)	Ag (μg/L)	Cd (μg/L)	Sb (μg/L)	Ba (μg/L)	Hg (μg/L)	TI (μg/L)	Pb (μg/L)	Th (μg/L)	U (μg/L)
3703-01	< 0,05	1,41	1,47	0,07	< 0,5	< 15	< 0,05	< 0,4	0,39	1,35	0,27	0,54	0,66	< 0,05	< 0,2	< 0,05	103	< 0,5	< 0,05	< 0,2	< 0,05	0,64
3703-02	< 0,05	< 1	0,37	0,07	< 0,5	< 15	< 0,05	< 0,4	1,47	2,30	0,34	0,97	0,41	< 0,05	< 0,2	< 0,05	103	< 0,5	< 0,05	< 0,2	< 0,05	0,74
3703-03	< 0,05	1,50	1,42	< 0,05	< 0,5	< 15	< 0,05	< 0,4	0,36	1,00	0,31	1,14	0,65	< 0,05	< 0,2	< 0,05	37,5	< 0,5	< 0,05	< 0,2	< 0,05	0,38
3703-04	< 0,05	< 1	1,43	< 0,05	< 0,5	< 15	< 0,05	< 0,4	0,67	1,20	0,29	1,05	0,52	< 0,05	< 0,2	< 0,05	33,5	< 0,5	< 0,05	< 0,2	< 0,05	0,33
3703-05	< 0,05	2,30	0,94	0,07	< 0,5	< 15	< 0,05	< 0,4	0,85	1,26	0,20	0,63	0,41	< 0,05	< 0,2	< 0,05	40,8	< 0,5	< 0,05	< 0,2	< 0,05	0,19
3703-06	< 0,05	1,46	1,76	< 0,05	< 0,5	< 15	< 0,05	< 0,4	0,25	1,02	0,24	0,54	0,54	< 0,05	< 0,2	< 0,05	50,5	< 0,5	< 0,05	< 0,2	< 0,05	0,38
3703-07	< 0,05	< 1	1,75	0,08	< 0,5	< 15	< 0,05	< 0,4	0,41	1,04	0,25	0,52	0,54	< 0,05	< 0,2	< 0,05	58,7	< 0,5	< 0,05	< 0,2	< 0,05	0,36
3703-08	< 0,05	< 1	0,37	< 0,05	0,98	< 15	< 0.05	< 0,4	0,23	1,00	0,13	4,99	0,61	< 0,05	< 0,2	< 0,05	25,1	< 0,5	< 0,05	< 0,2	< 0,05	4,35
												ė.										
											Dooli-oo				, 1	/0 PO						

Realizado por:

V° B°

Informe N°	12/040				
Referencia de Laboratorio	3703-1				
Referencia de envio (Ident. de la muestra	CUENCA-1				
Fecha de entrega a Laboratorio	30/01/2012				
Proyecto N°	35300200				

De Laboratorio Aguas a Dirección de Aguas Subterráneas

INFORME DE DETERMINACIONES REALIZADAS

Nº Registro MEDIOVIN	F. de toma 20/01/2012	F. Termina 24/02/201		N. Muestra	CO2	Sr	
DQO CI 0,5 4	SO ₄ 38	HCO ₃	CO ₃	NO 3	Na 3	Mg 3	Ca 75
K pH 0 7,53	Coduc. (1) 386	R. S. 186 270,2	0° N0 ₂ 0,00	NH ₄ 0,00	PO 4 0,00	SiO ₂ 10,3	Temp
F2 B	F <0,5	Li I	Br Fe	Mn Cu	Zn	Pb	Cr
Ni Cd	As	Sb	Se Al	CN De <0,01	tergentes	Hg	
Fenoles	тос	TC	Rad. Alfa(2)	Err Alfa	Rad. B	Beta (2) Err Be	eta

La Jefe de Laboratorio:	RECIBIDO D.A.S.	V∘ B∘

Las determinaciones serán expresadas en mg/l, excepto: (1) en µS/cm y (2) en Bq/l

OBSERVACIONES:

VALOR=0,00 ES INFERIOR A SU LIMITE DE DETERMINACION METALES ANALIZADOS POR ICP-MS,RESULTADOS EN HOJA ADJUNTA. Num.Reg=HORCAJADA"MEDIOVINO"

ALCANCE DE ACREDITACIÓN

INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA, (IGME)

Dirección: C/ La Calera, 1; 28760 Tres Cantos (Madrid)

Está acreditado por la ENTIDAD NACIONAL DE ACREDITACIÓN, conforme a los criterios recogidos en la Norma UNE-EN ISO/IEC 17025: 2005 y en el documento CGA-ENAC-LEC para la realización de:

Ensayos en el sector medioambiental

ÁREA DE MUESTRAS MEDIOAMBIENTALES LÍQUIDAS

Categoría 0 (Ensayos en el laboratorio permanente)

PARTE A: ANÁLISIS FÍSICO - QUÍMICOS

PRODUCTO/MATERIAL A ENSAYAR	ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO
Aguas continentales	pH (2 - 12 uds. de pH)	Procedimiento interno PTE-AG-002
	Conductividad (10 - 2500 μS/cm)	Procedimiento interno PTE-AG-001
	Residuo seco (180°C) (10 - 20000 mg/l)	Procedimiento interno PTE-AG-005
	Oxidabilidad (0,5 - 10 mg/l)	Procedimiento interno PTE-AG-004
	Metales por espectrofotometría de absorción atómica de llama	Procedimiento interno PTE-AG-008
	Cinc (0,05 - 1 mg/l) Cobre (0,05 - 2 mg/l Hierro (0,1 - 1 mg/l) Manganeso (0,05 - 0,5 mg/l)	STINAC STINAC

El presente anexo técnico está sujeto a posibles modificaciones. La vigencia de la acreditación puede confirmarse en la web de ENAC (http: www.enac.es)

PRODUCTO/MATERIAL A ENSAYAR	ENSAYO	NORMA/PROCEDIMIENTO DE ENSAYO
Aguas continentales (continuación)	Metales por espectrofotometria de absorción atómica con cámara de grafito Arsénico (5 - 100 μg/l) Cadmio (0,5 - 15 μg/l) Cromo (2,5 - 100 μg/l) Hierro (20 - 500 μg/l) Manganeso (10 - 400 μg/l) Plomo (5 - 100 μg/l) Selenio (5 - 30 μg/l)	Procedimiento interno PTE-AG-022
	Mercurio por espectrofotometría de absorción atómica de vapor frío (0,5 - 10 μg/l)	Procedimiento interno PTE-AG-009
	Metales por espectrofotometría de emisión atómica Litio (0,05 - 1 mg/l) Potasio (1 - 50 mg/l) Sodio (2 - 500 mg/l)	Procedimiento interno PTE-AG-007
	Radiactividad α y ß total α (0,004 - 27,17 Bq/l) β (0,014 - 207,53 Bq/l)	Procedimiento interno PTE-AG-006